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Lattice-Boltzmann simulations have been used to investigate low-Reynolds-number
settling of monodisperse and polydisperse suspensions. We confirm the discovery that
particle velocity fluctuations are strongly suppressed by no-slip walls at the top and
bottom of the system, even in regions distant from the boundaries. We also show that
a monodisperse suspension develops a strongly anisotropic long-range microstructure
during the settling process, with vanishing density fluctuations in the horizontal plane.
We find no numerical evidence that the particle concentration in the bulk is stratified;
diffusive spreading of the suspension–supernatant interface is suppressed by hindered
settling, as would be expected in moderately concentrated suspensions.

Long-range correlations in particle density fluctuations are destroyed by poly-
dispersity in particle size, and in this case density fluctuations are finite at all length
scales and in all directions. However, in polydisperse suspensions there is significant
stratification, due to differential settling rather than interface diffusion, which provides
an alternative mechanism for screening the hydrodynamic interactions. It is possible
that this is the dominant mechanism for hydrodynamic screening in several laboratory
experiments.

1. Introduction
Particles larger than a few microns tend to settle out of suspension, because gravita-

tional forces dominate over the diffusive flux arising from gradients in particle concen-
tration. When a suspension settles, each particle experiences a different shielding of the
fluid drag, owing to the fluctuating arrangements of its neighbours (Ham & Homsy
1988). These hydrodynamic interactions are long range, decaying asymptotically as
the inverse interparticle separation, and drive large fluctuations in particle velocity.
For particles more than about 10 µm in diameter, hydrodynamic diffusion completely
dominates the thermal Brownian motion. The detailed dynamics of the most idealized
flow, the sedimentation of hard spheres in the absence of inertia and Brownian motion
is still controversial. A straightforward calculation shows that, if the particle positions
are independently and uniformly distributed, the velocity fluctuations are proportional
to the linear dimension of the container (Caflisch & Luke 1985). However, two dif-
ferent sets of experiments found that the velocity fluctuations converge to a fixed value
for sufficiently large systems (Nicolai & Guazzelli 1995; Segré, Herbolzheimer &
Chaikin 1997). The qualitative discrepancy between theory and experiment has gene-
rated considerable attention, focusing on possible mechanisms for screening the hydro-
dynamic interactions and thereby saturating the velocity fluctuations when the system
size is larger than the screening length.
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The key theoretical idea (Koch & Shaqfeh 1991) is that hydrodynamic interactions
can be screened by changes in suspension microstructure, analogous to the screening
of electrostatic interactions in charged systems. Hydrodynamic screening occurs when
a test particle and its neighbours are collectively neutrally buoyant with respect to the
bulk suspension; in other words, when density fluctuations at length scales larger than
the screening length are suppressed. This requires a rather delicate long-range cor-
relation in the distribution of particle pairs that is resistant to the randomizing effects
of hydrodynamic dispersion. Several different bulk mechanisms for the microstruc-
tural changes have been proposed, including three-body hydrodynamic interactions
(Koch & Shaqfeh 1991), a convective instability (Tong & Ackerson 1998), and a
coupled convection–diffusion model (Levine et al. 1998; Ramaswamy 2001). However,
these theories are all inconsistent with the results of numerical simulations (Ladd
1993, 1996, 1997), which have shown that in homogeneous suspensions (with periodic
boundary conditions) particles are distributed randomly at separations beyond a
few particle diameters, and the velocity fluctuations therefore remain proportional to
container size.

More recently, the role of the container boundaries has been explored in detail
(Brenner 1999; Ladd 2002; Tee et al. 2002; Mucha & Brenner 2003; Mucha et al. 2004;
Nguyen & Ladd 2004). The primary goal has been to discover if container walls can
qualitatively change the hydrodynamic interactions in the bulk suspension. Brenner
(1999) analysed the effects of vertical container walls on the particle velocity fluctu-
ations, but found that they do not eliminate the system size dependence. However,
numerical simulations (Ladd 2002) subsequently showed that rigid boundaries at the
top and bottom of the vessel cause a strong time-dependent damping of the velocity
fluctuations even in bulk regions far from the walls. These boundaries introduce
interfaces between sediment, suspension and supernatant fluid, which are absent in sys-
tems with periodic boundary conditions. The time-dependent damping of the velocity
fluctuations was explained by convective draining of large-scale fluctuations in particle
density to these interfaces (Ladd 2002), a suggestion made earlier by Hinch (1988). A
different picture of the effect of container walls was proposed independently, and more
or less simultaneously (Tee et al. 2002), where it was suggested that hydrodynamic dis-
persion at the suspension–supernatant interface leads to a stratification in the particle
concentration. A stratified suspension introduces another length scale, beyond which
the hydrodynamic interactions are screened (Luke 2000). However, a model based on
convection of density fluctuations (Nguyen & Ladd 2004) leads to qualitatively dif-
ferent conclusions from a stratified suspension (Mucha & Brenner 2003; Mucha et al.
2004); we will compare these ideas with the results of our simulations in § § 4.1 and 5.1.

Recent experimental results have cast doubt on the conclusion that the velocity
fluctuations necessarily reach a steady state that is independent of system size.
Bernard-Michel et al. (2002) did not observe a convincing saturation of the velocity
fluctuations over comparable cell sizes to Segré et al. (1997). Tee et al. (2002) found
that for large cells the fluctuations decayed for the duration of the experiment, no
matter what the height of the container; these observations were explained by an
increasing stratification of the suspension with time. Other experiments found that the
velocity fluctuations were eventually stationary and independent of system size, even
in very large vessels (Guazzelli 2001). To make further progress, it will be necessary to
reconcile the apparently conflicting experimental results, and to develop the correct
physical picture underlying the screening of the hydrodynamic interactions in settling
suspensions. At that point, it may be possible to construct a statistical–mechanical
theory along lines proposed earlier (Ramaswamy 2001).
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The focus of the present work is on the microstructure of a settling suspension, as
characterized by the distribution of pairs of particles in the bulk suspension. At low
Reynolds numbers, the instantaneous particle velocities are completely determined
by the particle positions, and it can be shown that the dominant contribution to the
velocity fluctuations can be calculated from the structure factor (Ladd 1993; Levine
et al. 1998),

S(k) = N−1

N∑
i,j=1

exp(−ik · r ij ), (1.1)

which is the Fourier transform of the pair correlation function. The effects of hydro-
dynamic screening show up in the long-wavelength (small k) behaviour of S; an
asymptotic k2-dependence of the structure factor indicates screening and an eventual
saturation of the velocity fluctuations with increasing container size. It has not proved
possible to measure S(k) directly by light scattering, owing to the large size of the
particles, but direct imaging has been used to measure related spatial fluctuations
in particle concentration (Lei, Ackerson & Tong 2001). In our simulations we have
been able to determine the structure factor directly, which is the quantity of greatest
theoretical interest. A preliminary account of this work has already been published
(Nguyen & Ladd 2004). Here, we present a detailed account of our results for both
the velocity fluctuations and the microstructure, including effects of polydispersity,
which may be crucial in interpreting experimental results.

2. Simulation method
The computational problem of simulating the coupled dynamics of solid particles

within a continuum fluid has been approached in several different ways, with either
time-independent or time-dependent (inertial) fluid dynamics. In the time-independent
approach, which encompasses Stokesian dynamics (Brady & Bossis 1988; Durlofsky,
Brady & Bossis 1987) and boundary-element methods (Pozrikidis 1993; Muldowney &
Higdon 1995; Loewenberg & Hinch 1996), the fluid flow field is calculated in the
quasi-stationary Stokes-flow approximation, whereas in time-dependent methods the
dynamics of fluid and particles evolve simultaneously on the inertial time scale. Time-
dependent methods include grid-based schemes, such as finite-difference (Feng, Hu &
Joseph 1994a, b) and lattice-Boltzmann methods (Ladd & Verberg 2001), and particle-
based models, such as dissipative-particle-dynamics (Hoogerbrugge & Koelman 1992)
and smooth-particle-hydrodynamics (Zhu, Fox & Morris 1999). A comparison of
some of the available methods is contained in the review by Ladd & Verberg (2001).
In this work, we use the lattice-Boltzmann model for the fluid phase and a coupling
between the solid particles and fluid that was first described in Ladd (1994a, b). The
most up-to-date description of the algorithm is given in Ladd & Verberg (2001) and
Nguyen & Ladd (2002); here we summarize the key ideas.

2.1. Lattice-Boltzmann equation

The fundamental quantity in the lattice-Boltzmann model is the discretized one-
particle velocity distribution function ni(r, t), which describes the mass density of
particles with velocity ci , at a particular node of the lattice r , at a discrete time t . The
hydrodynamic fields, mass density ρ, momentum density j = ρu, and momentum flux
Π, are moments of this velocity distribution:

ρ =
∑

i

ni, j =
∑

i

ni ci , Π =
∑

i

ni ci ci . (2.1)
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The time evolution of ni(r, t) is described by a discrete analogue of the Boltzmann
equation (Frisch et al. 1987),

ni(r + ci�t, t + �t) = ni(r, t) + �i [n(r, t)] , (2.2)

where �i is the change in ni owing to instantaneous collisions at the lattice nodes and
�t is the time step. The collision operator �i is usually constructed by linearizing
about the local equilibrium neq (Higuera, Succi & Benzi 1989), i.e.

�i(n) = �i(neq) +
∑

j

Lij n
neq
j , (2.3)

where Lij are the matrix elements of the linearized collision operator, n
neq
j = nj − n

eq
j

is the non-equilibrium distribution, and �i(neq) = 0. Somewhat surprisingly, this
simple evolution equation is second-order accurate in space and time. The numerical
diffusion that usually accompanies a low-order grid-based method is eliminated by
the relationship between the eigenvalues of the linearized collision operator and the
fluid viscosity (see for example, § 5 of Ladd & Verberg 2001).

The standard 19 velocity model comprises stationary particles and the 18 velocities
corresponding to the [100] and [110] directions of a simple cubic lattice. The popula-
tion density associated with each velocity has a weight aci that describes the fraction
of particles with velocity ci in a system at rest; these weights depend only on the
speed ci and are normalized so that

∑
i a

ci = 1. In order for the viscous stresses to be
independent of direction, we require the rest density of particles in the [100] directions
to be twice that of particles moving in the [110] directions. The optimum choice of
weights for this model is

a0 = 1
3
, a1 = 1

18
, a

√
2 = 1

36
. (2.4)

In our suspension simulations we use a three-parameter collision operator, allowing
for separate relaxation of the five shear modes, one bulk mode, and nine kinetic modes.
The post-collision distribution n�

i = ni + �i is written as

n�
i = aci

(
ρ +

j · ci

c2
s

+
(ρuu + Πneq,�) :

(
cici − c2

s 1
)

2c4
s

)
, (2.5)

where the sound speed cs = �x/
√

3�t , �x is the spacing between neighbouring fluid
nodes and �t is the time step. The non-equilibrium momentum flux Πneq =

∑
i n

neq
i ci ci

relaxes owing to collisions at the lattice nodes,

Πneq,� = (1 + λ)Π
neq

+ 1
3
(1 + λv)(Π

neq : 1)1, (2.6)

where Πneq = Π − Πeq and Πeq = ρc2
s + ρuu is the equilibrium momentum flux. The

parameters λ and λv are eigenvalues of the linearized collision operator and are
related to the fluid shear and bulk viscosities:

η = −ρc2
s �t

(
1

λ
+

1

2

)
, ηv = −2ρc2

s

3
�t

(
1

λv

+
1

2

)
. (2.7)

The factor of 1/2 serves to correct for numerical diffusion, so that viscous momentum
diffuses at the expected speed for the given viscosity. For low-Reynolds-number flows,
the most suitable values are λ= λv = −1 (Ladd & Verberg 2001).

In the presence of an externally imposed force density f ext, for example a pressure
gradient or a gravitational field, the time evolution of the lattice-Boltzmann model
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includes an additional contribution fi(r, t),

ni(r + ci�t, t + �t) = ni(r, t) + �i [n(r, t)] + fi(r, t). (2.8)

This forcing term can also be expanded in a power series in the velocity,

fi = aci

[
f ext · ci

c2
s

+
(u f ext + f extu) :

(
ci ci − c2

s 1
)

2c4
s

]
�t. (2.9)

More accurate solutions to the velocity field are obtained if it includes a portion of
the momentum added to each node (Ladd & Verberg 2001),

j ′ = ρu′ =
∑

i

ni ci + 1
2

f ext�t. (2.10)

The macrodynamical behaviour arising from the lattice-Boltzmann equation can be
found from a multi-scale analysis (Frisch et al. 1987), using an expansion parameter
ε, defined as the ratio of the lattice spacing to a characteristic macroscopic length; the
hydrodynamic limit corresponds to ε � 1. It can be shown that the lattice-Boltzmann
equation reproduces the Navier–Stokes equations with corrections that are of the
order u2 and ε2 (Ladd & Verberg 2001). Thus, at sufficiently low Mach numbers, the
method is second-order accurate in space, with relative errors proportional to �x2. It
is also second-order accurate in time if the viscosities are defined according to (2.7).

2.2. Particle suspensions

Boundary conditions in the lattice-Boltzmann model are straightforward to
implement, even for non-planar surfaces (Ladd 1994a). Solid particles are defined by
a surface, which cuts some of the links between lattice nodes. Fluid particles moving
along these links interact with the solid surface at boundary nodes placed halfway
along the links. Thus we obtain a discrete representation of the particle surface, which
becomes more and more precise as the particle becomes larger (figure 1). The moving
boundary condition (Ladd 1994a) without interior fluid (Aidun, Lu & Ding 1998)
is then implemented as follows. We take the set of fluid nodes r just outside the
particle surface, and for each node all the velocities cb such that r + cb�t lies inside
the particle surface. An example of a set of boundary-node velocities is shown by the
arrows in figure 1. Each of the corresponding population densities is then updated
according to a simple rule which takes into account the motion of the particle surface
(Ladd 1994a);

nb′(r, t + �t) = n∗
b(r, t) − 2acbρ0ub · cb

c2
s

, (2.11)

where n∗
b(r, t) is the post-collision distribution at (r, t) in the direction cb, and

cb′ = −cb. The local velocity of the particle surface,

ub = U + Ω×(rb − R), (2.12)

is determined by the particle velocity U , angular velocity Ω , and centre of mass
R; rb = r + cb�t/2 is the location of the boundary node.

As a result of the boundary node updates, momentum is exchanged locally between
the fluid and the solid particle, but the combined momentum of solid and fluid is
conserved. The forces exerted at the boundary nodes can be calculated from the
momentum transfer during the boundary-node update (equation (2.11)),

f b

(
rb, t + 1

2
�t

)
=

�x3

�t

[
2n∗

b(r, t) − 2acbρ0ub · cb

c2
s

]
cb. (2.13)
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Figure 1. Location of boundary nodes along a curved surface. The incoming velocities along
links cutting the boundary surface are indicated by arrows. The locations of the boundary
nodes are shown by open squares, and the fluid nodes by solid circles. The particles used in
the majority of the simulations have a radius of 2�x, or about half the linear resolution of
the object sketched here.

The particle forces F and torques T are then obtained by summing f b(rb) and
rb × f b(rb) over all the boundary nodes associated with a particular particle. It can
be shown analytically that the force on a planar wall in a linear shear flow is exact
(Ladd 1994a), and several numerical examples of lattice-Boltzmann simulations of
hydrodynamic interactions are given in Ladd (1994b). For pairs of particles near
contact, an additional lubrication force is added to correct for the missing singular
interactions (Nguyen & Ladd 2002).

An implicit update of the particle velocities is used to ensure stability (Lowe,
Frenkel & Masters 1995). The particle force and torque are separated into a compon-
ent that depends on the incoming velocity distribution and a component that depends,
via ub, on the particle velocity and angular velocity (equations (2.12) and (2.13));

F = F0 − ζFU · U − ζFΩ · Ω, (2.14)

with a similar equation for the torque. The velocity independent forces are determined
at the half-time step,

F0

(
t + 1

2
�t

)
=

�x3

�t

∑
b

2n∗
b(r, t)cb, (2.15)
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where the sum is over all the boundary nodes, b, describing the particle surface. The
matrices

ζFU =
2ρ0�x3

c2
s �t

∑
b

acb cbcb, (2.16)

ζFΩ =
2ρ0�x3

c2
s �t

∑
b

acb cb(rb × cb), (2.17)

are high-frequency friction coefficients, and describe the instantaneous force on a
particle in response to a sudden change in velocity. There are corresponding equations
for the friction coefficients associated with the torque. An implicit update of the
particle velocities requires two passes through the boundary nodes. On the first pass,
the population densities are used to calculate F0 and T 0. The equations of motion for
the particle velocities reduce to linear ordinary differential equations, and are solved
by the implicit Euler method. These velocities are then used to calculate the new
population densities in a second sweep through the boundary nodes.

The lubrication forces complicate the update of the particle velocity because they
involve interactions between many particles, especially at higher concentrations. Since
a many-particle implicit update can lead to large linear systems of equations, we
have implemented an algorithm which uses an implicit update only where necessary.
Schematically, we solve the coupled differential equations

ẋ = −A · x + b (2.18)

by splitting the matrix A into regular AR and singular AS components, A =AR +AS .
AS contains only the most strongly diverging friction coefficients of pairs of particles
very near contact. Using a mixed explicit–implicit differencing,

x(t + �t) − x(t)

�t
= −AR · x(t) − AS · x(t + �t) + b, (2.19)

we obtain the first-order update

(1 + AS�t) ·x(t + �t) = x(t) − AR�t · x(t) + b�t. (2.20)

The important point is that, by a suitable relabelling of the particle indices, AS can be
cast into a block diagonal form, with the potential for an enormous reduction in the
computation time for the matrix inversion. The relabelling is achieved by a cluster
analysis; the details are given in Nguyen & Ladd (2002).

The implicit update becomes impractical in the dense pack at the base of a settling
suspension. In this region, clusters of particles in close contact span the container
dimensions and quickly exceed the limit where the linear system solve is a small com-
ponent of the total computational cost, typically at about 2000 particles per cluster.
Since the particle velocities are very small in this region, we define a front below
which the particle velocities are set to zero. The front is set to the plane where the
particle volume fraction first exceeds a preset value, typically 50%. In practice, the
front is well below the sediment–suspension interface.

2.3. Settling of pairs of particles

The algorithm for simulating the hydrodynamic interactions between suspended parti-
cles, described in § § 2.1 and 2.2, has been extensively tested by comparisons with
theory, independent simulations and experiment (Ladd 1994b; Nguyen & Ladd 2002).
However, in dynamic simulations, artefacts introduced by the motion of the particle



80 N.-Q. Nguyen and A. J. C. Ladd

0 200 400 600 800
1

2

3

4

5

∆r—a

0 200 400 600 800
t/ts

20

40

60

80

100(b)

(a)

θ (deg.)

Figure 2. Settling of a horizontal pair of particles at different Reynolds numbers; Re= 0.1
(circles), 0.05 (squares), 0.025 (triangles). The centre–centre separation, �r , and orientation to
the horizontal, θ (in degrees), are plotted as a function of time; ts = a/U0 is the Stokes time.
The simulations used particles of radius a = 2�x in a periodic box 10a × 10a × 40a.

over the grid can cause additional errors in the trajectories of the particles. We have
previously found (Nguyen & Ladd 2002) that fluctuations in particle velocity are of
the order of one per cent for particles of the size used in this work. More sophisticated
boundary conditions (Bouzidi, Firdaouss & Lallemand 2001; Verberg & Ladd 2001;
Ginzbourg & d’Humières 2003; Rohde et al. 2003) reduce the fluctuations by at least
an order of magnitude, but none of these ideas has yet been implemented in a multi-
particle simulation. Here we examine the settling of pairs of particles to assess the
effects of grid artefacts and the residual fluid inertia.

Two spheres settling side-by-side repel each other when the spacing is of the order
of the particle diameter (Jayaweera, Mason & Slack 1964; Kim, Elghobashi &
Sirignano 1993). The rotation of the particles gives rise to a lift force, which tends
to drive them apart. At small Reynolds numbers, Re< 0.1, the repulsion between the
particles become negligible and the separation distance does not change appreciably
over time (Wu & Manasseh 1998). We examined the settling of two particles at a
range of particle Reynolds numbers 0.025 <Re < 0.1, where the Reynolds number,
Re= 2ρ〈U‖〉a/η, is given in terms of the mean settling velocity 〈U‖〉, particle diameter
2a, fluid density ρ and viscosity η. Figure 2 shows that the particles maintain their
orientation, and slowly drift apart with a velocity proportional to Re. At the highest
Reynolds number, the separation velocity is about 0.15% of the settling velocity, not
inconsistent with the experiments of Wu & Manasseh (1998), which were for shorter
times, of the order of 150ts , and touching particles �r/a = 2.

Figure 3 shows the relative motion of a pair of particles settling with different initial
orientations. Particles oriented in the horizontal (θ = 0) and vertical (θ = 90◦) direc-
tions maintain their initial orientations over time, although the particles drift away
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Figure 3. Settling of a pair of particles at various orientations: θ = 0◦ (circles), 45◦ (squares),
68◦ (triangles), 90◦ (diamonds). The centre–centre separation, �r , and orientation to the hori-
zontal, θ (in degrees), are plotted as a function of time. The Reynolds number Re= 0.1 in each
case.

from each other (horizontal) or towards each other (vertical), owing to the residual
fluid inertia. In Stokes flow (Re =0), a pair of spherical particles oriented at some in-
termediate angle should settle as a unit, maintaining the separation and orientation of
the pair, but in our simulations particles at off-axis orientations have slightly different
velocities and the pair slowly rotates with time. Nevertheless, the variations in particle
velocity are much smaller than the effects of polydispersity, which is inherent in labora-
tory experiments. Similar variations in velocity would be produced by polydispersity
of the order of 0.1%, whereas in most laboratory experiments the polydispersity is
1–10%.

2.4. Sedimentation simulations

Simulations of sedimentation are computationally demanding because of the large
number of particles necessary to capture the length scales involved in the development
of hydrodynamic interactions. The simulation parameters are therefore a carefully
chosen compromise between several competing factors, limited by the requirement
that a calculation be completed in a reasonable amount of time, of the order of one
month. Experiments (Segré et al. 1997) suggest that the characteristic length scale is
the mean interparticle spacing d = aφ−1/3 and that the screening length is of the order
of 20d . The computational time required for our simulations is, to a first approxima-
tion, proportional to the number of fluid grid points, and therefore the total volume
is an important limitation. We have limited our calculations to a single volume frac-
tion φ = 0.13 (d ≈ 2a), which was chosen as a reasonable compromise between keeping
d small and avoiding the additional complications of a highly concentrated suspension.
We used a cell with a square cross-section, and studied a range of widths from W = 8d

to W = 24d . Laboratory experiments use larger cells, 100 < W/a < 1000, but smaller
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volume fractions, so that W/d is usually less than 100 (Segré et al. 1997; Bernard-
Michel et al. 2002), although larger cells are sometimes used (Guazzelli 2001; Tee
et al. 2002). In most instances, the simulation cells were bounded at the top and
bottom by rigid impermeable walls and we have found by experience that a cell height
H = 1000a ≈ 500d is necessary to allow time for the suspension to reach a steady state.
We have varied the cell height in some instances, as reported in § 3.2. At the chosen
volume fraction, the suspension contains between 8000 and 72000 solid particles.

A key component of this work is the assessment of the effects of boundary condi-
tions on the suspension microstructure and dynamics. A no-slip boundary breaks the
macroscopic translational invariance in the direction normal to the boundary surface,
and because of the long-range character of hydrodynamic interactions, this symmetry
breaking may have a significant effect far from the boundary. We have therefore com-
pared results for three different sets of boundary conditions: systems bounded in all
directions by rigid walls, which we denote as ‘Box’; systems bounded by walls at the
top and bottom, while the vertical faces were periodic (‘Bounded’); and systems with
periodic boundary conditions on all faces (‘PBC’). For systems with periodic boun-
daries on all faces, the height to width ratio was set to 4:1, as previous work showed
no change occurred with taller cells (Ladd 1997). In the simulations with no-slip
boundaries at the top and bottom (‘Box’ and ‘Bounded’), data were taken in a window,
typically of height 200a, centred around 350a from the bottom of the vessel, as is
typical in experimental measurements. We have checked that the results are insensitive
to the position of the viewing window as long as it is located in a region of uniform
particle concentration. Fully periodic systems (‘PBC’) are spatially homogeneous, and
data are averaged over the entire volume in this case. When considering the system
dimensions, it should be noted that an extra 2a has been added to all dimensions
bounded by no-slip walls. This allows for the excluded volume of the walls and keeps
the particle volume fraction as close as possible to 13%. We will identify the system
dimensions in this paper without the additional excluded volume correction.

A particle radius of two grid spacings, a = 2�x, was used in all these simulations,
as compared with a = 1.5�x or a = 1.25�x in previous work (Ladd 1997, 2002).
Test calculations with small numbers of particles (see § 3.3) suggest that there are
no qualitative changes to the results if larger particles are used. The largest systems
studied in this work contain 72 000 particles and approximately 20 million grid points.
The simulations were run for 2000 Stokes times, where the Stokes time ts = a/U0 is
the time it takes an isolated particle to settle one radius. The gravitational force was
set so that the Stokes time corresponded to 250 time steps and the complete settling
simulation therefore required half a million steps. The lengthiest calculations take
about 1 month on a cluster of 8 Pentium 4 processors (2.4 GHz). The typical particle
Reynolds number was Re = 0.06, whereas in laboratory experiments it is usually one to
two orders of magnitude smaller. Although the residual inertia is a potential source of
complication, tests described in § 3.3 and laboratory experiments (Cowan, Page &
Weitz 2000) suggest that inertial effects are small at Reynolds numbers Re < 1.

3. Velocity fluctuations
We have examined the transient and steady-state fluctuations in particle velocity

under different macroscopic boundary conditions, in order to assess the effects of
container size on the amplitude of the fluctuations. This issue has already been exa-
mined from several different perspectives (see § 1); here we present a complete and
up-to-date account of our own investigations.
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Figure 4. Particle velocity fluctuations as a function of time. (a) The vertical (‖) and (b) hori-
zontal (⊥) fluctuations about the mean are shown for monodisperse suspensions of width
W = 48a, bounded by rigid no-slip walls (circles) and periodic boundaries (squares). The
sampling window for the box system was 250 � z/a � 400 and the height of the cell was 1000a.

3.1. Time-dependent velocity fluctuations

The initial particle configuration was sampled from the most-probable (or maximum
entropy) distribution of hard spheres, which was generated by a Monte-Carlo simula-
tion. At moderate concentrations, particle positions are correlated because of excluded
volume. Thus the initial distribution does not obey Poisson statistics, but the pair
probability is nevertheless random for separations of more than 5–10 particle radii.
The particle velocities were initialized by a run of 200ts during which time the particle
positions were fixed in place, although the velocities were free to adapt to the local
flow. Thus the initial configuration for the dynamical simulation (t = 0) was an idea-
lized well-stirred distribution, without large-scale spatial inhomogeneities.

Simulations have shown that the time evolution of the velocity fluctuations depends
qualitatively on the macroscopic boundary conditions (Ladd 2002). Figure 4 illustrates
the different time dependence for ‘PBC’ and ‘Box’ geometries. With periodic boundary
conditions the velocity fluctuations initially increase with time, reaching a plateau after
approximately 200ts (Ladd 1993, 1997). However, when the container is bounded by
no-slip walls, the fluctuations decay with time, over a period of approximately 1000ts .
The initial fluctuations are comparable to a homogeneous suspension (‘PBC’), but in
the ‘Box’ geometry, they decay to a much smaller value. A similar decay in the velocity
fluctuations has been observed experimentally (Guazzelli 2001; Bernard-Michel et al.
2002).

The data in figure 5 show that velocity fluctuations decay to similar levels in both
‘Box’ and ‘Bounded’ geometries, and therefore the amplitude of the velocity fluctua-
tions is controlled by the boundary conditions at the top and bottom of the container
(Ladd 2002). As an additional test, we ran simulations with no-slip vertical walls
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Figure 5. Particle velocity fluctuations as a function of time for (a) ‘Box’ and (b) ‘Bounded’
geometries. The vertical (‖) fluctuations about the mean are shown for various widths:
W/a = 16 (circles), 32 (squares) and 48 (triangles), respectively. Data were taken within a
window 250 � z/a � 400; the height of the cell was 1000a.

and periodic boundary conditions at the top and bottom; these results were similar
to the fully periodic case. Vertical no-slip boundaries may play an important role in
containers with large aspect ratios (Brenner 1999), but our results show that there is
no qualitative effect in containers with a square cross-section.

The decay of the velocity fluctuations in the bulk of the suspension cannot be ex-
plained by direct screening of the long-range interactions by the boundaries. Although
a no-slip boundary does screen the hydrodynamic interactions of particles near the
boundary, the screening does not extend to particles that are further from the wall than
they are from each other (Brenner 1999). Thus in the measurement window, which
is typically 5–10W from the container base, the hydrodynamic interactions are not
significantly affected by the boundaries. Moreover, the time-dependent decay of the
fluctuations suggests that there is a redistribution of the particle configurations during
the settling process. The most likely mechanism is that the container bottom and the
suspension–supernatant interface act as sinks of fluctuation energy, as suggested by
Hinch (1988). A horizontal density fluctuation can be idealized as two regions (or
blobs) side by side, one slightly heavier than the average and the other slightly lighter.
These density fluctuations convect to one of the two interfaces and are absorbed
by the density gradient at the interface. Scaling arguments suggest that a horizontal
density fluctuation of length l convects with a velocity vl ≈ U0(φl/a)1/2 with respect
to the mean (Hinch 1988), so that fluctuations drain away on a time scale

tC(l) ≈ l/vl ≈ (l/aφ)1/2ts . (3.1)

In the absence of no-slip boundaries at the top and bottom of the container, large-
scale density fluctuations recirculate through the suspension, and the fluctuations in
density and velocity are therefore time independent, as shown in figure 4.
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Figure 6. Mean settling velocity, 〈U‖〉, and fluctuations in settling velocity, 〈�U 2
‖ 〉, as a

function of time for different system heights, H . The observation window is located between
300 � z/a � 500 in all cases. The data are taken in a ‘Bounded’ geometry of width W/a = 16.

To account for the velocity fluctuations reaching steady state, the model must in-
clude some mechanism for replenishing the large-scale density fluctuations; otherwise
the velocity fluctuations will continually decrease. We will assume that small-scale (of
order d) density fluctuations are generated by conversion of gravitational potential
energy, and then spread out by hydrodynamic diffusion, resulting from short-range
multi-particle interactions. The characteristic length of the density fluctuation will
grow to order l in a time of order

tD(l) ≈ l2/D, (3.2)

where D‖ ≈ U0a is the hydrodynamic dispersion coefficient. By balancing the convec-
tion time, tC , with the diffusion time, tD , we obtain a critical length scale, lc ≈ aφ−1/3,
beyond which fluctuations drain away more rapidly than they can be replenished
by diffusion. Thus the system reaches a steady state with a correlation length that
is independent of system width and proportional to the mean interparticle spacing
aφ−1/3, as observed experimentally (Segré et al. 1997; Guazzelli 2001). This is the
physical idea underlying the convection–diffusion model proposed by Levine et al.
(1998), which will be discussed in detail in § 4.2. An alternative explanation, based on
the development of a stratified density profile in the suspension (Mucha & Brenner
2003; Mucha et al. 2004), will be discussed in § § 4.1 and 5.4. The scaling of the
diffusivity used here, D ∼ U0a, is consistent with the idea of a ‘bare’ diffusivity that is
renormalized by long-wavelength fluctuations (Levine et al. 1998), but not with the
model proposed by Mucha & Brenner (2003).

Within a viewing window far from the sediment and supernatant interfaces, the velo-
city fluctuations reach a quasi-steady state after a time period of the order of 1000ts .
The mean settling velocity and the velocity fluctuations within the viewing window
are unaffected by system height, as shown in figure 6. For the height used in most of
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Figure 7. Particle velocity fluctuations at steady state. Profiles are shown for the ‘Box’ system
(solid symbols) at different widths: W/a = 16 (circles), 32 (squares) and 48 (triangles). The
profile is taken within a central slice of the viewing window of thickness 2a, comparable
to particle-image-velocimetry experiments. The solid lines indicate results for the ‘Bounded’
geometry, averaged over the whole cross-section. The temporal and spatial windows used for
each system are given in table 1.

our simulations (H = 1000a), there is an upper time limit to the simulations of about
1500ts , before the supernatant interface starts to interfere with the measurements in
the viewing window. The time taken to reach steady state depends on the container
width (see figure 5), ranging from 600 to 700ts for the smallest systems (W = 16a) to
about 1000ts for the largest systems (W = 48a).

3.2. Steady-state settling

A settling particle produces a disturbance in the fluid flow that decays as r−1 at low
Reynolds number, where r is the distance from the disturbance. This disturbance
causes a fluctuation in the velocity of another particle that decays as r−2. Assuming
the particles are distributed uniformly, then integration over volume leads to the
well-known result:

〈U 2〉 ∝ W, (3.3)

where W is the container dimension (Caflisch & Luke 1985). Precise results have been
worked out in the low-concentration limit for several different geometries (Ladd 1993;
Koch 1994; Mucha et al. 2004). The data in figure 5 show that the initial velocity fluc-
tuations follow the Caflisch & Luke (1985) scaling (equation (3.3)), while the steady-
state velocity fluctuations grow more slowly with system size.

The steady-state fluctuations across the viewing window are shown in figure 7. The
time window for averaging was determined separately for each system, depending on
the time to reach a quasi-steady state (see figure 5); the duration of the time window
was 400ts in all cases. The results were also averaged over a range of vertical positions,
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W/a Box Centre Bounded Time (ts) Space (a)

〈�U 2
‖ 〉/〈U‖〉2 16 0.22 0.27 0.29 Box 600–1000 150–550

32 0.37 0.47 0.55 800–1200 200–500
48 0.47 0.52 0.73 1100–1500 250–450

〈�U 2
⊥〉/〈U‖〉2 16 0.07 0.15 0.08 Bounded 700–1100 200–650

32 0.12 0.23 0.14 800–1200 250–600
48 0.17 0.28 0.18 1000–1400 250–500

Table 1. Steady-state particle velocity fluctuations in a monodisperse suspension as a function
of system width. Fluctuations have been averaged over the whole cross-section in the columns
labelled ‘Box’ and ‘Bounded’. The column labelled ‘Centre’ is the value along the centreline in
the ‘Box’ geometry (figure 7), and is most closely related to experimental measurements. The
temporal and spatial windows used for averaging are shown in the last two columns.

chosen so that the density and velocity fluctuations were constant apart from statistical
errors (see figure 18). The spatial and temporal windows used in figure 7 are given in
table 1. For the ‘Bounded’ geometry the velocity fluctuations were averaged over the
whole horizontal plane, while for the ‘Box’ geometry the fluctuations were measured
in a thin slice of width 2a located in the centre of the container. Figure 7 shows that
even though the velocity fluctuations grow less than linearly with width, they do not
converge to a width-independent value for the range of system sizes studied.

The steady-state velocity fluctuations are summarized in table 1. Results for the
‘Box’ geometry were averaged in two different ways; over the whole horizontal plane
and along the centreline of the system (the central region in figure 7). The data
calculated along the centreline were obtained from the small number of particles in
a cross-section of area 4a2; it has large statistical errors, but is more closely related
to experimental measurements than the average over the plane. Results for the
‘Bounded’ geometry were averaged over the horizontal plane only, since the system
is homogeneous in that plane. The results show similar trends with increasing system
size, although the ‘Bounded’ geometry is less saturated than the ‘Box’ geometry. The
anisotropy in the vertical and horizontal fluctuations is noticeably less in the ‘Box’
geometry than the typical experimental measurement 〈�U 2

‖ 〉 = 4〈�U 2
⊥〉, but in § 5.2

it will be shown that the calculated anisotropy is increased by polydispersity in the
particle size.

Figure 8 shows that the simulation data agree quite well with experimental measure-
ments if the container width, W , is scaled by the mean interparticle separation,
d = aφ−1/3. It has been shown experimentally that d is the characteristic length scale
describing the effect of particle concentration (Segré et al. 1997; Bernard-Michel et al.
2002); the measured correlation length is always of the order of 20d , regardless of
concentration. The data in figure 8 indicate that larger containers are required for
the velocity fluctuations to fully saturate and become independent of system size, but
this is not computationally feasible at present. The simulation results averaged over
the horizontal plane are about 20% smaller than experimental measurements, while
values at the centreline are closer to experiment, but the statistics are poor. It should
be noted that in using the empirical fit to experimental data in figure 8,

〈�U 2
‖ 〉1/2 = 2〈U‖〉φ1/3

(
1−e−6W/d

)
,

〈�U 2
⊥〉1/2 = 〈U‖〉φ1/3

(
1 − e−6W/d

)
;

}
(3.4)
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Figure 8. Comparison of steady-state particle velocity fluctuations with experimental results.
Simulation results for monodisperse suspensions (circles) and polydisperse (see § 5.2) suspen-
sions (squares) are plotted against the ratio of the cell size to the mean interparticle spacing,
W/aφ1/3. The ‘Box’ geometry has been used to compare with a fit to experimental data given
by Segré et al. (1997) (equation (3.4)), shown by the solid line . The column labelled ‘Centre’
is the value along the centreline, and is most closely related to experimental measurements.

we have taken the smallest container dimension as the controlling length, whereas
Segré et al. (1997) used the larger lateral dimension in fitting their experiments.
They claimed a better fit from this choice, but it cannot be justified physically or
theoretically.

3.3. Numerical errors

The simulations described in this paper are not expected to be a completely quantita-
tive description of Stokes-flow hydrodynamics. In particular, we cannot disregard the
possibility that inertial effects play a role on scales larger than the particle radius. At
the volume fraction used in this work, we can expect that particle velocity correlations
persist for distances of the order of 40a (Segré et al. 1997), and the Reynolds number
based on this distance is 1.2. The data in figure 9 show that, in a system of width
W = 16a (N = 8000), inertia plays no role for particle Reynolds numbers Re< 0.1; the
Reynolds number based on container width, ReW = ρ〈U‖〉W/η, ranges from 0.12 to
0.96. We have verified this conclusion in a larger system as well (W = 32a, N =32 000);
no significant difference in velocity fluctuations was observed between Re= 0.06 and
0.03 (ReW = 0.96 and 0.48). Computational limitations prevented a study of the effects
of inertia in still larger systems, but the largest value of ReW is only 1.44. Experimental
results (Cowan et al. 2000) suggest inertial effects are small if Re < 1, a much weaker
condition.

An additional concern with lattice-Boltzmann simulations are artefacts introduced
by the motion of particles across the grid. It was shown in § 2.3 that these grid artefacts
cause a small but measurable dispersion in the trajectories of pairs of particles, and
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Figure 9. Effect of inertia on the mean settling velocity and fluctuations in settling velocity.
The data are averaged within a window of height 250 � z/a � 400 in the ‘Bounded’ geometry
(N = 8000) for different Reynolds numbers; Re= 0.015 (circles), 0.03 (squares), 0.06 (triangles),
and 0.12 (diamonds).

the same random noise may serve to weaken the microstructural changes that lead to
suppression of velocity fluctuations. However, simulations with larger particles, with
smoother trajectories are not qualitatively different. The effects of grid resolution are
shown in figure 10; the larger particles correspond to a more refined mesh.

4. Microstructure
The dynamics of suspensions at low Reynolds numbers are controlled by the dis-

tribution of particle positions, which is sufficient to determine the velocities at any
instant of time. In a settling suspension, subtle shifts in the pair correlation function
can have a dramatic effect on the macroscopic behaviour. Specifically, it has been
established that the amplitude of the velocity fluctuations are largely determined by
the structure factor (Ladd 1993), and in particular its low-k limiting behaviour:

〈�U 2〉 ∝ U 2
0 φ

a

∫
S(k)

k4
dk, (4.1)

where S(k) was defined in (1.1). Explicit expressions for the velocity fluctuations in
suspensions with periodic boundary conditions are given in Koch (1994). The most
important point is that the amplitude of 〈�U 2〉 is controlled by the low-k behaviour
of S. If S(k → 0) is some non-zero constant, as is the case at equilibrium, then the
velocity fluctuations are proportional to container size, but if S(k → 0) vanishes as k2

or faster, the divergence is suppressed.
It has not been possible to measure the structure factor of a settling suspension of

non-Brownian particles experimentally, since the particles are too large for light-
scattering measurements. However, fluctuations in particle concentration have been
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Figure 10. Effect of grid resolution on the mean settling velocity and fluctuations in settling
velocity. The data are averaged within a window of height 250 � z/a � 400 in the ‘Bounded’
geometry (N = 8000) for different particle sizes; a = 1.25 (circles), 2.0 (squares) and 2.7
(triangles).

measured within cylindrical and rectangular windows (Lei et al. 2001), but this gives
only an angle average of the pair distribution. In numerical simulations, it is possible to
calculate S(k) as a function of both wavelength and direction. This is important, since
some theories predict that the structure factor becomes highly anisotropic at long-
wavelengths (Levine et al. 1998), with the horizontal fluctuations, S(k⊥), vanishing as
k2

⊥ and the vertical fluctuations, S(k‖), remaining finite at all wavelengths. Here, we
amplify on a preliminary report (Nguyen & Ladd 2004) of the structure factor in a
steadily settling suspension, and investigate the possibility of stratification of the
particle concentration (Mucha & Brenner 2003; Mucha et al. 2004).

4.1. Particle concentration

The interface between a settling suspension and the supernatant fluid is generally
thought to be macroscopically sharp, owing to hindered settling (Davis & Hassen
1988). However, at low volume fractions, when hindered settling is negligible, hydro-
dynamic dispersion at the suspension–supernatant interface can lead to a stratification
of the particle concentration and a non-uniform density in the bulk (Tee et al. 2002;
Mucha & Brenner 2003; Mucha et al. 2004). The time evolution of the concentration
profile, φ(z, t), can be approximated by a convection–diffusion equation, which, in a
Lagrangian frame moving with the mean settling velocity −U , can be written as

dφ

dt
+ U ′∂zφ = D‖∂

2
z φ, (4.2)

where U ′ = −φdU/dφ is the velocity of a density perturbation with respect to the
mean settling speed and D‖ is the hydrodynamic diffusion coefficient in the vertical
direction. If we take the diffusion coefficient measured in the largest ‘Box’ simulation,
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Figure 11. Particle volume fraction as a function of height, z. The dots indicate the instantan-
eous average over a horizontal slice of thickness a, at a time t = 1200ts . The steady-state
(1000< t/ts < 1400) density profile in the viewing window is shown in the adjacent plots.
Results are shown for the (a) ‘Box’ and (b) ‘Bounded’ geometries for systems of width W = 48a
(N = 72 000).

D‖ =4〈U‖〉a, the solution to (4.2) is similar to the profiles shown in figure 11; in
particular, there is a bulk region where the concentration is constant, and a sharp
interface spread over approximately 10 particle diameters.

Stratification has been proposed as a mechanism for suppressing velocity fluctua-
tions (Luke 2000), by making it possible for fluctuations in particle concentration to
reach a neutrally buoyant position in the suspension without draining all the way to
an interface. However, the density profiles for ‘Bounded’ and ‘Box’ geometries shown
in figure 11 are not stratified; instead the concentration profile is uniform in the bulk
and the suspension–supernatant interface is sharp. Hydrodynamic dispersion does
cause a spreading of the interface, but this is compensated by hindered settling, which
convects the less dense regions at a higher velocity than the high-density regions and
thereby sets up a convective flux in opposition to the diffusive flux. Balancing the
convective and diffusive concentration fluxes with respect to a frame moving with
the mean settling velocity, we estimate an interface thickness, D‖/U ′ of the order of
5a, at this volume fraction. The prediction of a sharp interface is consistent with the
simulated density profile shown in figure 11.

The plots of average concentration shown in figure 11 have a positive slope in log φ

of the order of 10−4a−1, while other simulations have negative slopes of comparable
magnitude. This suggests that any residual density gradient must have a characteristic
length considerably greater than 104a. Otherwise, a negative slope in log φ would
be consistently observed above the noise. We conclude that the stratification is most
probably below the predicted critical stratification (Mucha et al. 2004), which is about
10−4a−1 at this system size and volume fraction. Later, we will see that that the velocity
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Figure 12. Structure factor describing horizontal density fluctuations, S(k⊥), for various
system sizes: (a) W = 16a, (b) 32a, and (c) 48a. The data were averaged within the viewing
window of the ‘Bounded’ geometry at steady state, and are essentially independent of system
size for a given wavelength. The equilibrium structure factor is represented by the solid line.

fluctuations in monodisperse suspensions are independent of height (figure 18), con-
trary to the predictions of the stratification model.

4.2. Structure factor

The structure factors were calculated from particle positions within the viewing
window using the ‘Bounded’ geometry, which allows for more accurate Fourier
analysis in the horizontal plane. Figure 12 shows that, in comparison with the initial
equilibrium distribution, horizontal density fluctuations are strongly suppressed by
no-slip boundaries at the top and bottom of the container. A physical interpretation
of the data in figure 12 is that, if the viewing window were divided into vertical slices
of sufficient size, there would be exactly the same number of particles in each slice,
rather than the expected variance of order of the number of particles in the slice.
On the other hand, suspensions with periodic boundary conditions do not undergo
significant changes in microstructure during settling (Ladd 1997). In particular, the
structure factor remains finite at all wavelengths. The significance of these results is
that they demonstrate that the macroscopic boundaries have a profound effect on the
distribution of particles in the bulk suspension.

The structure factor in a settling suspension develops a strong anisotropy, as
shown in figure 13. While the horizontal density fluctuations decay to zero at long
wavelengths, roughly as k2

⊥, the vertical fluctuations tend to a non-zero constant at
small k‖. Damping of horizontal density fluctuations at least as fast as k2

⊥ is the
minimum requirement for hydrodynamic screening, as was pointed out by Levine
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Figure 13. Structure factor at different angles; vertical [0,0,1] direction (circles), 45◦ [1,0,1]
direction (squares), and horizontal [1,0,0] direction (triangles). The solid lines are quadratic
fits to the vertical and horizontal fluctuations.

et al. (1998). They proposed that there are two qualitatively distinct non-equilibrium
phases for settling suspensions, an unscreened phase characterized by a random
microstructure and a screened phase where the long-wavelength density fluctuations
in the horizontal plane are suppressed. They obtained an expression for the non-
equilibrium structure-factor,

S(k) =
N⊥k2

⊥ + N‖k
2
‖

D⊥k2
⊥ + D‖k

2
‖ + γ k2

⊥/k2
, (4.3)

which is consistent in functional form with the structure factor obtained in our nu-
merical simulations (figure 13). The renormalized parameters – the fluctuations in
particle flux Ni , the diffusion coefficients Di , and the damping coefficient γ – were
calculated from coupled field equations describing the evolution of the particle
concentration and fluid velocity (Levine et al. 1998). According to the theory, the
phase boundary is determined by the anisotropy in the renormalized noise, N⊥/N‖,
and diffusivity, D⊥/D‖.

The structure factor data can be used to extract ratios of the parameters that appear
in (4.3); namely, N⊥/γ =0.4a2 and N‖/D‖ = 0.17. We obtained N⊥/γ and N‖/D‖ from
the low-k behaviour of the horizontal and vertical density fluctuations, but since our
data are rather noisy, it is impossible to extract a meaningful value of D⊥/γ , which
appears as a quartic correction to the asymptotic k2 dependence of the structure
factor. Nevertheless, for the sake of completeness we will use our best estimate,
D⊥/γ = 0.5a2, to determine the ratio N⊥/N‖ ≈ 0.7. When combined with tracer-
diffusion measurements of D⊥/D‖ = 0.16, this suggests we are near the transition
between screened and unscreened phases (Levine et al. 1998). However, our data are
not sufficiently precise to enable a definitive conclusion to be drawn. Significantly
larger system sizes will be necessary for a quantitative comparison with the predictions
of the theory, with greatly increased computational requirements.

Density fluctuations have also been calculated in other low-index directions;
figure 13 also shows data for the 45◦ [1,0,1] direction. Unfortunately, the system is not
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Figure 14. Time evolution of structure factor for horizontal density fluctuations. The structure
factor was averaged over four different initial conditions and over successive intervals of 200ts;
0ts–200ts (circles), 200ts–400ts (squares), and 400ts–600ts (triangles). The solid line is the equi-
librium distribution. The inset emphasizes the behaviour of S(k⊥) at long wavelengths.

periodic for any k-vector that lies outside the horizontal plane, so this data are
inherently noisier than the [1,0,0] direction. Further complicating the analysis is the
presence of a shoulder in S(k), which is most clearly seen for the [1,0,0] direction at
ka ≈ π/4. For ka > π/4, the structure factor approaches the equilibrium distribution
(see figure 12), but there is a sharp change to an asymptotic k2

⊥ dependence when
ka < π/4. This behaviour is consistent with the renormalized convection–diffusion
model (Levine et al. 1998), with a transition between diffusive dynamics at shorter
wavelengths and convective dynamics at long wavelengths. The data for the 45◦ direc-
tion may also be showing a shoulder at smaller k, ka ≈ π/6, but a wider cell (smaller k-
vectors) is necessary to confirm this. This is an important point, because hydrodynamic
screening requires that the density fluctuations are damped in all directions except
the vertical. In practice, this means the shoulder is expected to move to smaller and
smaller k as the direction rotates from horizontal to vertical.

Although the structure factors measured in the simulations are consistent with
the predictions of Levine et al. (1998), their theory postulates that all the important
dynamics occurs in the bulk, independent of the macroscopic boundary conditions.
Although this is a logical assumption, numerical simulations have shown that it is
incorrect. Simulations with periodic boundary conditions (Ladd 1996, 1997) do not
exhibit any damping of the horizontal density fluctuations, as would be expected if the
model were correct in all essentials. Instead, our simulations suggest that the container
bottom and the suspension–supernatant interface act as sinks of fluctuation energy, as
suggested by Hinch (1988). Random density fluctuations convect to one of these two
interfaces and are absorbed by the density gradient at the interface. The data shown in
figure 14 support this conclusion, albeit not conclusively. Here we show the structure
factor in the viewing window during its evolution from an equilibrium state to the
steady state. Despite the limited time averaging (a total of 4 × 200ts = 800ts for each
plot), the implication is that the long wavelength fluctuations decay at a comparable
rate to those at smaller scales. If so, this is evidence for the immediate convection
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of large-scale density fluctuations (Hinch 1988), rather than the establishment of a
density gradient by hydrodynamic diffusion (Mucha et al. 2004).

4.3. Mean settling speed

Our results suggest that the mean particle velocity decreases during settling by about
25%, as shown in figure 9. This happens whenever there is a no-slip wall bounding
the top and bottom of the container, and is independent of system height (figure 6),
Reynolds number (figure 9) and grid resolution (figure 10). To our knowledge, a
systematic variation of settling velocity with time has not been reported previously,
but it is consistent with a time-dependent reduction in number-density fluctuations,
which has been observed experimentally (Lei et al. 2001). If the change in settling
velocity is owing to changes in the microstructure at long wavelengths, then it can be
estimated from the relation between the settling velocity and structure factor (Ladd
1993),

〈�U〉 =
6πU0a

(2π)3

∫
[S(k) − Seq(k)]

[
k2

x + k2
y

k4

]
dk. (4.4)

The steady-state structure factor was taken from (4.3) with the parameters determined
from the simulation data (§ 4.2); the equilibrium structure factor was fitted by a
quadratic polynomial. The integration was taken up to a maximum ka = π/2, beyond
which it was assumed that the structure factors were similar. This model predicted
a decrease in the mean settling speed of 〈�U〉 = −0.20U0 at φ =0.13, in reasonable
agreement with the simulation result, 〈�U〉 = −0.13U0.

5. Polydisperse suspensions
The particles used in typical laboratory measurements have a polydispersity in the

range 5–10% (Nicolai et al. 1995; Guazzelli 2001; Tee et al. 2002) although some
experiments use significantly more monodisperse particles (Segré et al. 1997; Bernard-
Michel et al. 2002). In a fluidized bed, it is well known that particles segregate accord-
ing to size, with a denser suspension of larger particles at the bottom and a less dense
suspension of smaller particles at the top. The larger particles have an inherently
higher settling velocity and therefore match the fluidization velocity at a higher concen-
tration than the smaller particles. Thus, a fluidized bed of polydisperse particles is
inevitably stratified in both concentration and volume fraction. We have studied
the settling of polydisperse suspensions to find out if there is significant segregation
during the settling process, and what effects that may have on the velocity fluctuations
and microstructure.

5.1. Stratification

Figure 15 shows the instantaneous density profiles in a 10% polydisperse suspension
at steady state (t = 1200ts). In contrast to a monodisperse suspension (figure 11), the
suspension–supernatant interface is considerably broader (figure 15a), and there is a
weak underlying stratification of the particle volume fraction. The volume fraction
profile is broken down in figure 15(b) into contributions from three different size
ranges. It can be seen that there is considerable segregation by this time and the
suspension–supernatant interface is dominated by the smallest particles. Small par-
ticles tend to drift into the upper region of the front, while the large particles settle
faster and are absent from the front; medium-size particles are distributed throughout
the suspension. We emphasize that the interface spreading seen in figure 15(a) is a
result of differential convection of different particle sizes rather than hydrodynamic
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Figure 15. Profiles of the particle volume fractions as a function of the system height at
t = 1200ts . The overall volume fraction for a 10% polydisperse suspension is shown in (a). The
volume fraction is shown separated into three size ranges in (b): large (solid line), medium
(dotted line) and small (circles). Each range contains an equal number of particles.
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Figure 16. Particle volume fraction profile for a 10% polydisperse suspension at steady state,
1000< t/ts < 1400. The density profile within typical viewing windows 200–500a is shown for
the ‘Box’ geometry.

diffusion, which we have seen does not produce a broad interface at this volume
fraction.

Our simulations show that there is a stratification of the particle mass density (or
volume fraction) in polydisperse suspensions, which persists deep into the bulk as
shown in figure 16. In comparison with the monodisperse suspension (figure 11), here
there is a decrease of particle volume fraction with height, which is clearly visible
over the statistical noise. The concentration profile can be modelled by a polydisperse
convection–diffusion equation analogous to (4.2):

∂tφi − ∂z (Uiφi) = ∂z(D‖∂zφi), (5.1)
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Figure 17. Particle velocity fluctuations as a function of time for a 10% polydisperse
suspension. The data are taken within a window of height 250 � z/a � 400 in the ‘Box’
geometry for three system widths: W/a = 16 (circles), 32 (squares) and 48 (triangles).

where the particle sizes have been divided into a number of different size ranges, with
volume fraction φi and settling velocity Ui = Ui,0f (φ). The settling velocity was con-
structed from the usual approximation that takes the settling velocity of the isolated
particle and a hindrance function, f (φ), based on the total volume fraction φ =

∑
i φi .

In the absence of diffusion, D‖ = 0, we find an interface spreading and segregation
that is qualitatively similar to the simulation data, confirming that polydispersity is
the dominant mechanism for stratification at this volume fraction. Experimentally,
convective spreading owing to polydispersity has been found to be more important
than hydrodynamic diffusion (Bergougnoux et al. 2002), even at volume fractions less
than 1%.

5.2. Velocity fluctuations

The concentration profile at the interface between a polydisperse suspension and
the supernatant fluid is continually evolving during settling, so the designation of
a steady state may be more arbitrary than in the monodisperse case. Nevertheless,
there are time windows of about 400ts duration when the velocity fluctuations are
essentially stationary, as shown in figure 17. The velocity fluctuations are larger than
in the monodisperse case (figure 8) as observed experimentally (Bernard-Michel et al.
2002), but the order of magnitude is the same. The anisotropy between vertical
and horizontal velocity fluctuations is in the range 3–4 for polydisperse suspensions,
comparable to experiment, while it is somewhat less for monodisperse suspensions.
The velocity fluctuations in the different geometries are summarized in table 2.

The dependence of the velocity fluctuations on height are qualitatively different in
monodisperse and polydisperse suspensions. Figure 18 shows that the velocity fluctua-
tions in monodisperse suspensions are independent of vertical position in the bulk
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W/a Box Centre Time (ts) Space (a)

〈�U 2
‖ 〉/〈U‖〉2 16 0.27 0.43 Box 600–1000 150–400

32 0.49 0.65 800–1200 200–400
48 0.60 0.95 1100–1500 250–400

〈�U 2
⊥〉/〈U‖〉2 16 0.08 0.12

32 0.14 0.24
48 0.19 0.34

Table 2. Steady-state particle velocity fluctuations in a 10% polydisperse suspension as a
function of system width. Fluctuations have been averaged over the whole cross-section in the
column labelled ‘Box’ and along the centreline in the column labelled ‘Centre’ (cf. figure 7).
The temporal and spatial windows used for averaging ‘Box’ geometry are shown in the last
two columns.
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Figure 18. Comparison of particle velocity fluctuations for (a) monodisperse and (b) 10%
polydisperse suspensions. The vertical (solid lines) and horizontal (dotted lines) velocity fluctua-
tions are averaged over the horizontal plane for the duration of the steady state 1000 < t/ts <
1400. Results are shown as a function of height, z/a, for the ‘Box’ geometry, with W = 48a.
(N = 72 000).

suspension, while in polydisperse suspensions they decay with increasing height.
Mucha et al. (2004) have pointed out that a stratified suspension is expected to lead
to a reduction of the velocity fluctuations near the suspension–supernatant interface,
because the density gradient is larger there (see figure 15a), and therefore more
effective in damping the velocity fluctuations. The decreasing fluctuations shown in
figure 18 are further evidence that the polydisperse suspension is stratified, while the
monodisperse suspension is not.

The data in figures 16 and 18 indicate that the velocity fluctuations are controlled
by stratification for z > 400a. The gradient in volume fraction, βa = − d(log φ)/dz, at
z = 400a is approximately 2.5 × 10−4. According to the scaling arguments in Mucha
et al. (2004), stratification controls the velocity fluctuations when β exceeds a critical
stratification βc, and at this point the velocity fluctuations should start to decay with
height. The predicted critical stratification (Mucha et al. 2004),

βca = B(W/a)−5/2φ−1/2, (5.2)
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Figure 19. Comparison of structure factors for different degrees of polydispersity: (a) mono-
disperse (circles) and 10% polydisperse (squares) suspensions (W = 48a, N = 72 000); (b) 2%
(circles), 5% (squares) and 10% (triangles) polydisperse suspensions (W =32a, N = 32 000).
Data were taken in the viewing window of ‘Bounded’ systems at steady state.

is βc ∼ 2 × 10−4a−1 (taking the constant B = 1), which is consistent with the observed
decay of the velocity fluctuations above this point.

The multi-species convection–diffusion equation (equation (5.1)) predicts a strati-
fication βa ∼ 2 × 10−4 for conditions corresponding to figure 16, in good agreement
with the stratification observed in the simulation. The results from the convection–
diffusion equation are insensitive to estimates of the diffusion coefficient in the range of
numerical and experimental observations, D/〈U‖〉a < 10; in fact, similar stratification
is observed without any hydrodynamic diffusion at all. These results demonstrate that
polydisperse suspensions can stratify by size segregation, and that the stratification is
sufficient to control the amplitude of the velocity fluctuations.

5.3. Structure factor

Our simulations show that small amounts of polydispersity destroy the delicate micro-
structural rearrangements observed in strictly monodisperse suspensions. Horizontal
density fluctuations in significantly polydisperse suspensions are not damped at long
wavelengths as they are for monodisperse suspensions, as shown in figure 19(a).
This implies that there is more than one mechanism for hydrodynamic screening. In
monodisperse suspensions, the distribution of particle pairs adjusts itself during settl-
ing so that the density fluctuations are damped as k2 at long wavelengths. In polydis-
perse suspensions, the microstructure is apparently randomized by the varying settling
speeds, but the particle velocity fluctuations are then damped by stratification
(§ 5.2).

The structure factors for different degrees of polydispersity are compared in
figure 19(b). The systems are smaller in this case and so there are fewer k-vectors. The
structure factor for 2% polydispersity is similar to the monodisperse case, apparently
vanishing as k2

⊥ at long wavelengths. For higher degrees of polydispersity, 5% and
10%, the structure factor tends to a non-zero value at low k⊥. It appears that only a
small amount of polydispersity (σ ∼ 0.02) can be tolerated if laboratory experiments
are to mimic the properties of a monodisperse suspension.
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Experiment W/a H/a φ σ βDa βσ a βca

Nicolai 95 50 1250 0.05 0.043–0.065 1 × 10−4 0.1–2 × 10−4 1 × 10−4

200 1 × 10−4 0.1–2 × 10−4 4 × 10−6

Segré 97 128 12 800 0.01 <0.02 6 × 10−6 <10−9 3 × 10−5

0.001 6 × 10−6 <10−9 9 × 10−5

Guazzelli 01 1350 2700 0.0005 0.054–0.081 3 × 10−5 0.7–4×10−4 3 × 10−7

Tee 02 113 4830 0.01 0.067–0.100 2 × 10−5 1–3 × 10−4 4 × 10−5

1330 45 300 5 × 10−7 1–3 × 10−5 8 × 10−8

Bernard-Michel 02 100 4000 0.01 <0.02 3 × 10−5 <10−9 5 × 10−5

100 0.070–0.105 3 × 10−5 1–4 × 10−4 5 × 10−5

400 <0.02 3 × 10−5 <10−9 2 × 10−6

Table 3. Estimates of stratification in laboratory experiments. Solutions of the convection–
diffusion equation for a multi-component suspension (equation (5.1)) have been used to predict
the stratification βa at a typical height for measurements H/3, and after a time when the
suspension has settled to half its original height. For each system, we show the stratification
produced by interface diffusion, βD , and by segregation, βσ , as well as the critical stratification,
βca. The hydrodynamic diffusion coefficients were calculated from Eqs. 5.4 and 5.5, using the
smallest container dimension as W .

5.4. Stratification in laboratory experiments

Solutions to (5.1) have also been used to estimate the degree of stratification in several
sets of laboratory experiments. The calculations are by no means exhaustive nor are
they quantitative; they describe only a range of possibilities based on a simple model
for the time-dependent concentration profile. The goal is to understand in which
experiments stratification may play a role, and whether it is predominately owing to
interface diffusion or size segregation. The hindered settling function was calculated
from the Richardson–Zaki expression,

f (φ) = (1 − φ)5.5, (5.3)

but the hydrodynamic diffusion coefficient is more problematic. Measured hydrody-
namic dispersion coefficients in settling suspensions are generally quite small, D‖ <

10U0a (Davis & Hassen 1988; Nicolai et al. 1995). However, it has been pointed out
(Mucha & Brenner 2003; Mucha et al. 2004) that the initial hydrodynamic diffusion
coefficient may be much larger; the theory for a random suspension Koch (1994)
gives

DW = Cφ1/2(W/a)3/2U0a, (5.4)

where C is a constant of order 1. However, a large diffusion coefficient promotes strati-
fication, which will tend to reduce further hydrodynamic dispersion by suppressing the
velocity fluctuations. We have therefore used the model proposed by Mucha & Brenner
(2003) for the hydrodynamic diffusion, making D‖ a function of the local strati-
fication. When β <βc (equation (5.2)), D‖ = DW , whereas for stratified regions, β >βc,

D‖ = Cφ1/5(B/βa)3/5U0a. (5.5)

We used the same proportionality constants as in Mucha & Brenner (2003); namely,
B = 0.5 and C =1.

Equations (5.1)–(5.5) were solved from an initially uniform spatial distribution;
the size distribution was assumed to be Gaussian. The degree of polydispersity σ

was taken in the range 1–1.5 times the reported standard deviation in particle size,
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to account for additional variations in settling speed owing to variations in particle
density and sphericity. The results in table 3 use a location one-third of the way up
the vessel as the reference point, and a time when the front has fallen half the initial
height.

Our calculations indicate that significant stratification can occur in most laboratory
experiments, as shown in table 3. Size segregation introduces a convective mechanism
for stratification, which is inherently more efficient over large distances than interface
diffusion, and makes a comparable or larger contribution to stratification than
interface diffusion in many cases. However, the degree of stratification is very sensitive
to the level of polydispersity, which is difficult to quantify since there are additional
contributions from variations in the density and shape of the particles. In general,
critical stratification is exceeded when the effective polydispersity is larger than 4–
5%. On the other hand, interface diffusion can cause significant stratification in
suspensions where the aspect ratio of the cell, H/W , is less than 10.

6. Discussion and conclusions
The focus of this work has been to address the role of macroscopic boundary condi-

tions on the microstructure of a settling suspension. We have found that, in mono-
disperse suspensions, there is a rearrangement of the pair distribution in the bulk
region of the suspension, which suppresses the long-wavelength density fluctuations.
Simulations with different macroscopic boundary conditions have demonstrated that
walls at the top and bottom of the container play a crucial role in determining this
distribution. The measured structure factor is consistent with the key qualitative fea-
tures predicted theoretically by Levine et al. (1998) using a renormalized convection–
diffusion model. However, this theory cannot yet explain why the macroscopic
boundary conditions are a key component of the dynamics.

We have found no evidence for stratification in monodisperse suspensions at mode-
rate concentrations. Our results suggest that the interface is sharp and that the concen-
tration in the bulk is uniform. The suggestion (Mucha et al. 2004) that our earlier
observations (Ladd 2002) could be explained in terms of stratification is incorrect,
although we do not rule out the possible significance of interfacial diffusion in dilute
suspensions (φ < 1%), such as are commonly used in particle-image-velocimetry mea-
surements (Guazzelli 2001; Tee et al. 2002; Bernard-Michel et al. 2002). We conclude
that there is a mechanism for microstructural rearrangement in the bulk of a mono-
disperse suspension, which leads to a substantial reduction in the amplitude of the
velocity fluctuations from the predictions for randomly distributed particles. Our
simulations are not large enough to show complete saturation, but the agreement
with experimental measurements (Segré et al. 1997; Bernard-Michel et al. 2002) at
comparable values of the cell size, W/aφ1/3, is good.

Most experiments use particles with significant polydispersity in size. In this case,
our results show that the pair correlations are noticeably more random than in the
monodisperse case and for σ � 0.05, the driving force for microstructural rearrange-
ments is no longer sufficient to combat the additional randomization from variations
in particle velocity. However, increasing polydispersity leads to significant stratifica-
tion, even at moderate concentrations. Since, in this case, the stratification is driven
by convective segregation of different particle sizes, it can spread over large distances,
even in the presence of hindered settling. We suggest that segregation-induced stra-
tification may have a profound effect on the interpretation of experimental measure-
ments, even in dense suspensions.
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Our simulations suggest that there is more than one screening mechanism at work
in laboratory experiments, and that it is therefore crucial to control the conditions
of the experiment, including the size and shape of the cell, the polydispersity of
the particles, and the initial conditions. Large cells, dilute suspensions and highly
monodisperse particles suggest stratification by interface diffusion will be important
(Mucha & Brenner 2003; Mucha et al. 2004), while small amounts of polydispersity
(σ � 0.05) will ensure stratification by size segregation in most instances. Moderate
concentrations will suppress interface diffusion, because of hindered settling, but not
stratification by size segregation. The shape of the sample cell may be important in
setting the initial distribution of density fluctuations and thus cells with high width to
depth ratios, may behave differently from square cells. There is limited experimental
data where polydispersity is clearly negligible; only the experiments of Segré et al.
(1997) and Bernard-Michel et al. (2002) use particles that are close to monodisperse.
Moreover, Bernard-Michel et al. (2002) found that saturation was not clearly observed
in very dilute suspensions. The fundamental question of the behaviour of the velocity
fluctuations in monodisperse suspensions therefore remains unsettled.
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Microgravity Biological and Fluids Physics Division of the National Aeronautics and
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